Europiiisches Patentamt

European Patent Office

(19) -o)

(12)

Office européen des brevets

(43) Date of publication:
09.04.2003 Bulletin 2003/15

NI

(11) EP 1 300 766 A2

EUROPEAN PATENT APPLICATION
“(51) int c1.7. GOGF 9/50

(21) Application number: 02256574.1
(22) Date of filing: 23.09.2002
(84) Designated Contracting States: (72) Inventors:
ATBEBG CHCY CZDEDKEE ES FIFR GB'GR * Hahn, Stephen C.
IETTLILU MC NL PT SESKTR) Redwood City, CA 94062 (US)
Designated Extension States: * Marsiand, Tim P.
AL LT LV MK RO SI Half Moon Bay, CA (US)
(80) Priority: 25.08.2001 US 964148 (74) Representative: Davies, Simon Robert et al
: D Young & Co,
(71) Applicant: Sun Microsystems, Inc. 21 New Fetter Lane
Santa Clara, California 95054 (US) .London, EC4A 1DA (GB)
(54) Method and apparatus for partitioning resources within a computer system
. (87) A method and system are provided that parti- cess to the plurality of different computer system re-

EP 1 300 766 A2

BNSDOCID" <EP,

tion computer system resources between concurrently

- executing workloads. The method and system operate

by estabiishing a first resource pool that specifies re-
quirements for different computer system resources.
Next, the different computer system resources are allo-
cated to one or more resource pools, including the first
resource pool, to create a resource allocation, wherein

requirements of the first resource pool are satisfied, and

wherein resources allocated to the first resource pool
can change over time. A first process is then bound to
the first resource pool, so that the first process has ac-

sources allocated 1o the first resource pool. in one par-
ticular embodiment, whiie aliocating different computer
system resources, the computer system resources are
partitioned into one or more partitions, wherein a first
partition is associated with a first resource and a second
partition is associated with a second resource. The first
partition is then aliocated to a single resource pool, so
that only processes associated with the single resource
pool can access the first partition. At the same time, the
second partition is aliocated to multiple resource pools
so that processes associated with the muttiple resource
pools can share the second partition.

CPUS
202

SERVER 108

MEMORY
204

SWAP
SPACE -

206
NETWOREK. |
INTERFACES
208
SCHEDULING TIME SHARING | PROPCRTIONAL PEAL.TIME
CLASSES '] SCHEDULER | SHARE SCHEDULER p— SCHEDULER
210 211 213
so0L POOL POOL
A FREE
20 222

FIG. 2

Prnted by Jouve, 75001 PARIS (FR)

130076642_I_>

10

15

20

25

30

35

40

45

50

55

BNSDOCIDr <EP

EP 1 300 766 A2
Description

Field of the Invention

[0001] The present invention reiates 1o allocating resources within a computing system, for example, between dif-
ferent concurrently executing workioads.

Background of the invention

[0002] The advent of computer networks has led to the development of server computer systems that perform com-
putational operations on behalf of numerous client computer systems. These server computer systems are typically
configured with large amounts of computing resources, such as processors and memoty, and are typically employed
in processing one or more concurrently executing computational workloads.

[0003] One challenge in designing an operating system to manage such a server is to ensure that computer system
resources are allocated between computational workloads so that the minimum requirements of each workload are
satisfied, and so that the workioads are collectively executed in an efficient manner.

[0004] Some modern computing systems provide support for partitioning a machine-wide resource into smaller sets
and then associating one or more workioads with each of the sets. For example, the SOLARIS™ operating system,
distributed by SUN Microsystems, Inc. of Palo Alto, California, allows processors to be grouped into processor sets,
wherein specific processes may be bound to a specific processor set. In this way, the specific processes do not compete
with other processes for access to the specific processor set.

[0005] However, these partitioning operations must presently be specified manually by a machine operator and are
dependent upon the specific machine configuration, as well as the operator's awareness of resource reguirements for
excepted workloads. Furthermore, a given aliocation of computer system resources is not persistent across machine
failures.

[0006] Other operating systems have developed a mechanism for assembling a group of resources into a fixed
“container” that processes can bind to in order to access the resources. However, resources within a fixed container
cannot be flexibly changed over time to accommodate changing resource requirements for the various system work-
loads. Furthermnore, resources cannot be shared between containers.

Summary of the Invention

[0007] Accordingly, one embodiment of the present invention provides a system and method that allocate computer
system resources between concurrently executing workloads. A first resource pool is estabiished that specifies re-
quirements for different computer system resources. Next, the different computer system resources are allocated to
one or more resource pools, including the first resource pool, to create a resource allocation, wherein requirements of
the first resource pool are satisfied, and wherein resources aliocated to the first resource pool can change over time.
A first process is then bound to the first resource pool, so that the first process has access to the plurality of different
computer sysiem resources allocated to the first resource pool. Such an approach therefore allows computer system
resources to be allocated between difierent concurrently executing workloads.

[0008] In one particular embodiment of the present invention, while allocating different computer system resources,
the computer system resources are partitioned into one or more partitions, wherein a first partition is associated with
a first resource and a second partition is associated with a second resource. The first partition is then allocated to a
single resource pool, so that only processes associated with the single resource pool can access the first partition. At
the same time, the second partition is aliccated to muitiple resource pools so that processes associated with the multiple
resource pools can share the second partition. in this way, non-critical resources can be shared, while other resources
deemed critical to the successful execution of a workload are not shared.

[0009] in one embodiment of the present invention, prior to allocating the different compuier system resources, it is
verified that the collective requirements of the one or more resaurce pools can be satisfied. Ifthe collective requirements
cannot be satisfied, the system signals an error condition.

[0010] Ir =ne embodiment of the present invention, establishing the first resource pool invoives selecting a file con-
taining a representation of the first resource pool from a number of possibie fiies.

[0011] In one embodiment of the present invention, a representation of the resource allocation is saved 1o non-volatile
storage so that the resource allocation can be reused after a machine failure. This can be achieved, for exampile, by
using an Extensible Markup Language (XML) representation of the resource aliocation. One possibility is to store a
representation of each of the one or more resource poois along with associated resources.

[0012] In one embodiment of the present invention, the first resource pool is associated with a first project. and the
first process is one of a plurality of processes associated with the first project.

1300766A2_!_>

10

. 15

20

25

30

35

40

45

50

55

BNSDOCID: <EP,

EP 1 300 766 A2

[0013] Inoneembodiment of the present invention, establishing the first resource pool involves establishing minimum
and maximum requirements for a given resource.

[0014] In one embodiment of the present invention, the system dynamically adjusts the resource allocation during
execution. ’ '

[0015] In one embodiment of the present invention, the different computer system resources can include, central
processing units, semiconductor memory, swap space and networking resources.

Brief Description of the Figures

[0016] Various preferréd embodiments of the invention will now be described in detail, by way of exampie only, with
reference to the following drawings, in which like reference numerals identify like elements:

FIG. 1 illustrates a distributed computing system in accordance with one embodiment of the present invention.
FIG. 2 illustrates how computer-system resources are allocated to resource pools in accordance with one embod-
iment of the present invention.

FIG. 3illustrates the structure of a resource pool in accordance with one embodiment of the present invention.
FIG. 4 lllustrates how processes are associated with projects in accordance with one embediment of the present
invention. .

FIG. 5is aflow chart illustrating the process of setling up a resource allocation in accordance with one embodiment
of the present invention. '

FIG. 6 is a flow chart illustrating the process of storing & resource allocation to a file in accordance with one
embodiment of the present invention. :

-Detailed Description

Distributed Computing System

{0017] FIG. 1 illustrates a distributed computing system 100 in accordance with one embodiment of the present
invention. Distributed computing system 100 includes a collection of client computing systemns 102-104 that are coupled
1o a server computing system 108 through a network 1086.

[0018] Clients 102-104 can generally include any device having computational capability and a mechanism for com-
municating across the network. Server 108 can generally include any computing device having a mechanism for serv-
icing requests from clients 102-104 for computational and/or data storage resources. For example, clients 102-104
and server 108 may be a computer system based on a microprocessor, a mainframe computer, a digital signal proc-
essor, a portable computing device, a personal organizer, a device controller, a computational engine within an appli-
ance, and so on.

[0019] Cliients 102-104 and server 108 include central processing units (CPUs) that execute threads. Threads are
entities that generate a series of execution requests, while CPUs are entities that can satisfy the execution requests.
[0020] Network 106 can generally include any type of wired or wireless communication channel capabile of coupling
together computing nodes. This includes, but is not limited to, a local area network, a wide area network, or a combi-
nation of networks. In one embodiment of the present invention, network 106 includes the Intemet.

[0021] Server 108 includes an operating system 110 that supports flexible resource pools, which can be dynamically
modified during system operation in accordance with an embodiment of the present invention.

[0022] Note that alithough the present invention is described in the context of a server computer system, it is not
limited to a server computer system. In general, the present invention is applicable to any compuier system that allo-
cates computational resources to different computational workloads.

Allocation of Resources to Poois

[0023] FIG. 2 illustrates how computer system resources are allocated to pools 220-222 in accordance with one
embodiment of the present invention. As is illustrated in FIG. 2, server 108 contains various computational resources,
including central processing units (CPUs) 202, memory 204, swap space 206, network interfaces 208 and scheduling
classes 210. CPUs 202 include one or more CPUs within server 108. Note that it is possible to allocate an entire CPU
to a pool, or alternatively, a fraction of a CPU. Memory 204 includes the main memory resources of server 108. Swap
space 206 includes disk space that is used as a backing store for the virtual memory system of server 108. Nework
interfaces 208 include different channeis for connecting server 108 with network 106. Note that network resources can
altematively be partitioned by aliocating “available network bandwidth" instead of individual network interfaces.

[0024]) Schedulingclasses 210 are not actually system resources for which processes contend, but they can similarly

1300766A2_1_>

10

15

20

25

30

35

40

45

50

55

BNSDOCID" <EF

EP 1 300 766 A2

be allocated to pools. For exampie, in FIG. 2, time-sharing scheduier 211 is assigned to poo! 220, proportional share
scheduler is assigned to pool 221 and real-time scheduler 212 is unassigned.

[0025] As is illustrated in FIG. 2, some of the resources within server 108 are allocated to pool 220, while other
resources are aliocated to pool 221. Note that both pool 220 and pool 221 share the same set of CPUs, while pools
220 and 221 do not share memory 204, swap space 206 or network interfaces 208. in this way, non-critical system
resources can be shared, while cther resources, deemed critical to a workload's successful execution, are not shared.
This is an important advantage because sharing resources gives rise to more efficient resource utilization, which leads
1o better system performance.

[0026] Asis illustrated in FIG. 2, server 108 also includes a “pool free" 222 allocation that contains system resources
that are not assigned to specific poois.

Structure of Resource Pool

[0027] FIG. 3 illustrates the structure of resource pool 220 in accordance with one embodiment of the present in-
vention. Resource pool 200 includes references to different resources, including a reference to a processor set 302,
a reference to a memory set 304, a reference to a swap set 306, a reference 10 a network interface group 308 and a
reference to a scheduling class 310. These references keep track of the associations between pool 220 and its re-
sources. These references are indicated by arrows in FIG. 2.

[0028] Each of there references points to a resource data structure. For example, the reference to processorset 302
points to resource data structure 320. Resource data structure 320 includes a number of items, including a list of the
processor units 322 assigned to the resource. (Note that this list of units field only applies to certain resources, such
as processors, that are allocated in discrete units. For other resources that are aliocated as a range, such as memory,
this field is not used). Resource 320 also includes a minimum size 324 to be allocated for the resource, as well as a
maximum size 326 to be aliocated for the resource. These minimum and maximum sizes are used by the system 1o
automatically adjust the allocations assigned to resource 320 during system operation. Resource 320 also inciudes
the actual size 328 of the aliocation. Note that actual size 328 generally falls in the range from minimum size 324 to
maximum size 326.

[0028] Note that pool 220 also inciudes certain properties 312 of the pool. For example, one of the properties can
be "importance” of the pool. If each of the pools includes an importance value, the system can use these importance
values in adjusting the allocation of resources to pools. In doing so, the system can give preference to poois with higher
importance values.

Processes and Projects

[0D30] FIG. 4 illustrates how processes are associated with projects in accordance with one embodiment of the
present invention. As is illustrated in FIG. 4, one or more tasks 403-404 are associated with a given project 402. Each
of these tasks inciudes one or more processes. More specifically, task 403 includes processes 405 and 405, while task
404 includes process 407. Furthermore, each of these processes 405-407 can contain multiple threads (aiso referred -
to as light-weight processes). Note that when project 402 is associated with a resource pool, all of the associated
processes 405-407 are associated with the same pool.

[0031] This project/task/process structure can be used to represent some types of applications. For example, project
402 may be associated with a database system, wherein tasks 403-404 are associated with specific components of
the database system. Within the database system, processes 405-407 are dedicated to performing the actions involved
in executing the specific components.

Process of Setting Up a Resource Allocation

[0032] FIG. 5 is a flow chart illustrating the process of setting up a resource aliocation in accordance with one em-
bodiment of the present invention. The system starts by selecting afile in non-volatile storage containing configuration
information (step 502). Note that this file can be one of a number of different possible files containing resource alczation
information for the computer system. in one embodiment of the present invention, configuration information wiirun this
file is encoded in exiensible markup language (XML) format.

[0033] Next, the system opens the file (step 504) and then parses the configuration information to extract the con-
figuration (step 506). For each resource reguirement for a pool that is specified in the file, the system adds the minimum '
resource requirement to a collective requirement (step 508). The system then determines if the collective requirement
is larger than the machine size {step 510). If so, the system signals an error condition and terminates because the
collective requirement cannot be satisfied by the system (step 512).

[0034] Otherwise, if the collective requirement not larger than the machine size, the system constructs partitions for

1300766A2_1_>

10

.15

20

25

30

35

40

45

50

55

BNSDOCID: <EF

EP 1 300 766 A2

each resource that is specified in the file (step 514). This can be accomplished by first meeting the minimum reguire-
ments for each pool, and then using a card dealing algorithm to dole out additional resources. If the systern fails during
this partitioning process, the system signals an error condition and terminates (step 512). ,
[0035] Once the resources are successfully partitioned, the system associates pools with the partitions (step 516).
The system then binds each processto a specific pool thatis associated with the process (step 518). in one embodiment
of the present invention, this invoives looking up & project that is associated with the process, and then looking up the
pool that is associated with the project. Next, the System binds the process to each resource within the pool (step 520).
[0036] Note that this aliocation of resources to processes is merely an initial allocation. This allocation can change
over time as the system dynamically adjusts resource allocations based upon changing workload requirements (step
522). : '

Process of Storing 8 Resource Allocation

[0037] FIG. 6 is a flow chart illustrating the process of storing a resource allocation 1o a fite in accordance with one
embodiment of the present invention. (Note that although the system illustrated uses an XML representation for re-
sources and pools, in general any representation can be used, and the present invention is not limited to an XML
representation). '

[0038] The system processes each resource in turn. For each resource, the system assigns a unique identifier to
the resource (step 602), and then enumeraies properties of the resource (step 604). Next, the system creates a resource
node with properties as child nodes (step 608). The system then transforms this resource-properny tree into an XML
tag containing property sub-tags (step 608).

[0039] Next, the system processes each pool in um. For each pool, the system identifies dependent resources by
a unique identifier (step 610). The system then transforms the pool, along with |D-based resource references, into an
XML poo! tag containing references as attributes (step 612).

[0040] Next, the system commits the XML representation of the resources and the pools to a designated file (step
814). This allows the resources and pools to be reconstituted after a system failure.

[0041] After the configuration file is created, the system administrator can replicate the configuration file across
multiple machines in order to guarantee a stable configuration. There may be some minor edits required (e.g. CPU
names may differ, board names may differ), but the configuration is largely stable and very portable. Also, the config-
uration is persistent across reboots.

[0042] Furthermore, note thatthe configuration can be easily amended with small edits, such as altering the maximum
amount of resource in a set, or major edits, such as the complete removal of all pools on the system.

[0043] Moreover, the above-described model is flexible. A system administrator may choose 1o bind muitipie pools
to a single resource, or may bind only one pool to a partition and thus provide guaranteed control of the partition for a
pool. The system administrator may even leave a resource completely unutilized by associating no pools with the
partition, thereby ieaving the resource as an “emergency standby partition®”.

[0044] With the above-described model, shifting workioad is very easy. It simply involves associating the pool with
a different set of resources. Furthemmore, one or mulitipie resource sets may be changed, and the resource sets can
be changed many times over the lifetime of the pool.

{0045] Additionally, since the configuration document is XML, the configuration can be transformed into alternative
formats easily, and can thus be re-used by an XML-aware application that requires pool-refated information. For in-
stance, a pool monitoring application can read the dynamic XML configuration file and report the current configuration
as an HTML document or as a standard output text file.

Exampie Configuration File

[0048] The sample configuration file that appears below illustrates how resources and pools for a particular hosican
be represented in XML. Elements that contain other elements (for instance, processor_rset contains cpu) representa
containment relationship between those elements. Also, there are association relationships, which represent relation-
ships where elements require access to an uncontained element. For instance, pool elements have &
resource_processor_rset attribute which references a defined processor_rset element.

1300766A2_1_>

10

15

20

25

30

35

40

45

50

55

BNSDOCID: <EF,

EP 1 300 766 A2

<%xml version="1.0"?>
<IDOCTYPE pool_conf
PUBLIC "-//Sun Microsystems inc//DTD Resource Management All//EN"
“file:///usr/share/lib/xml/dtd/rm_all.did">
<pool_conf>
<processor_rset name="default" default ref_id="3452157">
<cpu id="0" ref_id="2313243" />
<cpu id="1" ref_id—="7568334" />
<cpu id="2" ref_id="6725923" />
<cpu id="3" ref_id="4786376" />
</processor_rset>
<memory_rset name="default" default ref_id="7091674" unit="MB" size="2048" >
<processor_rset name="small-0" id="0" ref_id="4845581">
<cpu id="4" ref_id="5219421" />
<cpu id="5" ref_id="6957092" />
<cpu id="6" ref_id="7951354" />
<cpu id="7" ref_id="3812561" />
</processor_rset>
<processor_rset name="small-1"id="1" ref_id="6520690"> <cpu id="8" ref_id="7900695"
/>
<cpu id="9" ref_id="7716369" />
<cpu id="10" ref_id="8321533" />

<cpu id="11" ref_id="4773559" />
</processor_rset>
<processor_rset name="large-0" id="2" ref_id="6841430">

<cpu id="12" ref_id="5596008" />

<cpu id="13" ref_id="4675903" />

<cpu id="14" ref_id="6997070" />

<cpu id="15" ref_id="7944641" />

<cpu id="16" ref_id="5091552" />

<cpu id="17" ref_id="1401062" />

<cpu id="18" ref_id="3872070" />

<cpu id="19" ref_id="6022338" />
~ </processor_rset> </processor_rset>
<memory_rset name="medium-0" id="1" ref_id="8701782" unit="MB" size="102 ">
<memory_rset name="medium-1" id="2" ref_id="1659240" unit="MB" size="1024" />
<memory_rset name="small-0" id~"3" ref_id="3981018" unit="MB" size="512" r>
<pool name="web_marketing" ref_id="3594665" resource _processor_rset="484558 1"
resource_memory_rset="8701782" importance="10" />
<pool name="web_salcs" ref_id="9338378" resource _processor_rsct="6520690"
resource_memory_rset="1659240" importance="10" />
<pool name="app marketing" ref_id="6784973" resource _processor_rset="6841430"
resource_memory_rset="3981018" importance="20" />

</pool_conf>

[0047] Note that the data structures and code described herein are typically stored on a computer readable storage
medium, which may be any device or medium that can store code and/or data for use by a computer system. This
includes, but is not limited 1o, magnetic and optical storage devices such as disk drives, magnetic tape, CDs (compact
discs) and DVDs (digital versatile discs or digital video discs), and computer instruction signals embodied in a trans-
mission medium (with or without a carrier wave upon which the signals are moduiated). For example, the transmission
medium may include a communications network, such as the Intemet.

[0048] Inconciusion, it will be appreciated that the different embodiments described above are by way of iliustration

1300766A2_1_>

10

15

20

25

30

35

40

45

50

55

BNSDOCID: <EP,

EP 1 300 766 A2

only, and not by way of limitation. Thus various modifications and adaptations of these embodiments will be apparent
to the skilled person, and remain within the scope of the invention as specified by the following claims and their equiv-
alents.

Claims

1.

2.

10.

11.

A method for allocating computer system resources between concurrently executing workloads, comprising:

establishing a first resource pool that specifies requirements for each of a pluraiity of different computer system
resources;

allocating the plurality of different computer system resources 10 one or more resource pools, including the
first resource pool, to create a resource allocation, wherein the requirements of the first resource pool are
satisfied, and wherein resources allocated to the first resource pool can change over time; and

binding a first process to the first resource pool, so that the first process has access to the plurality of different
computer system resources allocated to the first resource pool.

The method of claim 1, wherein alflocating the piurality of different computer sysiem resources to one or more
resource pools involves:

partitioning each of the plurality of difierent computer system resources into one or more partitions, wherein
a first partition is associated with a first resource and a second partition is associated with a second resource;
allocating the first partition to & single resource pool, so that only processes associated with the single resource
pool can access the first partition; and

allocating the second partition to multiple resource pools so that processes associated with the multiple re-
source pools can share the second partition.

The rmethod of claim 1 or 2, wherein prior to allocating the plurality of different computer system resources, the
method further comprises:

verifying that coliective requirements of the one or more resource pools can be satisfied; and
if the collective requirements cannot be satisfied, signaling an error condition.

The method of any preceding claim, wherein establishing the first resource pool involves selecting a file containing
a representation of the first resource pool from a plurality of possibie files.

The method of any preceding claim, further comprising storing a representation of the resource allocation to non-
volatile storage so that the resource allocation can be reused after a machine failure.

The method of claim 5, wherein storing the representation of the resource allocation invoives storing & represen-
tation of each of the one or more resource pools along with associated resources.

The method of claim 5 or 8, wherein storing the representation of the resource allocation involves storing an Ex-
tensible Markup Language (XML) representation of the resource allocation.

The method of any preceding claim,
wherein the first resource pool! is associated with a first project; and

wherein the first process is one of a plurality of processes associated with the first project.

The method of any preceding claim, wherein establishing the first resource pool involves establishing minimum
and maximum requirements for a given resource.

The method of any preceding claim, further comprising dynamically adjusting the resource allocation during system
execution.

The method of any preceding claim, wherein the plurality of different computer system resources can include:

central processing units;

1300766A2_1_>

10

15

20

25

30

35

40

45

50

55

BNSDOCID: <EP.

12.

13.

14.

15.

16.

17.

18.

19.

20.

EP 1 300 766 A2

semiconductor memory;
swap space; and
networking resources.

A computer-readable storage medium storing instructions that when executed by a computer cause the computer
to perform a method for allocating computer system resources between concurrently executing workloads, the
method comprising:

establishing a first resource pool that specifies requirements for each of a plurality of different computer system
resources;

allocating the piurality of different computer system resources to one or more resource pools, including the
first resource pool, to create a resource allocation, wherein requirements of the first resource pool are satisfied,
and wherein resources allocated to the first resource pool can change over time; and

binding a first process to the first resource pool, so that the first process has access to the plurality of different
computer system resources allocated to the first resource pool.

An apparatus that allocates computer system resources between concurrently executing workioads, comprising:

an establishment mechanism that is configured to estabiish a first resource pool that specifies requirements
for each of a plurality of different computer system resources;

an allocation mechanism that is configured to allocate the piurality of different computer system resources 1o
one or more resource pools, including the first resource pool, to create a resource allocation, wherein the
requirements of the first resource pool are satisfied, and wherein resources allocated to the first resource pool
can change over time; and

a binding mechanism that is configured to bind a first process to the first resource pool, so that the first process
has access to the plurality of different computer system resources allocated to the first resource pool.

The apparatus of claim 13, wherein the allocation mechanism is configured to:

partition each of the plurality of different computer system resources into one or more partitions, wherein a
first partition is associated with a first resource and a second partition is associated with a second resource;
allocate the first partition to a single resource pool, so that only processes associated with the single resource
pool can access the first partition; and to

aliocate the second partition to multiple resource pools so that processes associated with the multiple resource
pools can share the second partition.

The apparatus of claim 13 or 14, wherein the apparatus additionally includes a verification mechanism that is
configured to verify that collective requirements of the one or more resource pools can be satisfied;

wherein if the collective requirements cannot be satisfied, the verification mechanism is configured to signal
an error condition.

The apparatus of any of ciaims 13 to 15, wherein the establishment mechanism is configured to select a file con-
taining a representation of the first resource pool from a plurality of possible files.

The apparatus of any of claims 13 to 16, further comprising an archiving mechanism that is configured to store a
representation of the resource allocation to non-volatile storage so that the resource allocation can be reused after
a machine failure.

The apparatus of claim 17, wherein the archiving mechanism is configured to store a representation of each of the
one or more resource pools along with associated resources.

The apparatus of claim 17 or 18, wherein the archiving mechanism is configured to store an Extensible Markup
Language (XML) representation of the resource allocation.

The apparatus of any of claims 13 to 19,

wherein the first resource pool is assaciated with a first project; and
wherein the first process is one of a piurality of processes associated with the first project.

1300766A2_1_>

EP 1 300 766 A2

21. The apparatus of any of claims 13 to 20, wherein the establishment mechanism is configured to establish minimum
and maximum requirements for & given resource.

22. The apparatus of any of claims 13 to 21, further comprising an adjustment mechanism that is configured to dy-
5 namically adjust the resource allocation during system execution.

23. The apparatus of any of claims 13 to 22, wherein the plurality of different computer system resources can include:

central processing units;
10 semicanductor memory,;

swap space; and

networking resources.

24. A computer program comprising instructions that when executed by a computer cause it to perform the method of
.15 any of clams 1 to 11.

20

25

30

35

40

45

50

55

BNSDOCID: <=P 1300766A2_1_>

BNSDOCID. <EP,

EP 1 300 766 A2

CLIENT 100
102 SERVER 108
CLIENT NETWORK OFPERATING SYSTEM WITH
103 106 FLEXIBLE RESOURCE
POOLS
110
CLIENT
104
FI1G. 1
SERVER 108
F——————— -~ T T === — = |
cPUS] & i
02 P [‘ ol N
e e e — — o — — Jd —_—— i
204 /AN
SWAP ’//7; VR ';/ v :‘\\\'{.\; S
SPACE :j///// /////4/4{\:\\\&4 o
206 7 NN
NETWORK . T T T T =TT |
e 77 NN
NT > N
INTERFACES) &\w: r
SCHEDULING TIME SHARING | PROPORTIONAL REAL-TIME
CLASSES b SCHEDULER |SHARE SCHEDULER |«—| SCHEDULER
210 211 212 213
POOL POOL i
220 221 222
FIG. 2

1300766A2_|_>

10

EP 1 300 766 A2

POOL 220

REFERENCE TO PROCESSOR SET 302 —

REFERENCE TO MEMORY SET 304

rREFERENCE TO SWAP SET 306]

REFERENCE TO NETWORK I/F GROUP 308J

REFERENCE TO SCHEDULING CLASS 310

PROPERTIES 312

LIST OF UNITS 322

MINIMUM SIZE 324

MAXIMUM SIZE 326

ACTUAL SIZE 328

RESOURCE 320

FIG. 3
PROJECT
402
TASK 403 TASK 404
PROCESS PROCESS PROCESS
§4§5 g g AES E g 4§07§
FIG. 4

11

BNSDOCID: <EP 1300766A2__ >

e r——— —— e - w—— — e

BNSDOCID: <EF

START

EP 1 300 766 A2

SELECT CONFIGURATION FILE
502

Yy

OPEN CONFIGURATION FILE
504

v

PARSE CONFIGURATION FILE
506

|
v

FOR EACH RESOURCE SPECIFIED
IN CONFIGURATION FILE, ADD TO
COLLECTIVE REQUIREMENT
508

v

1S

COLLECTIVE vES | SIGNAL
REQUIREMENT LARGER THAN ERROR
MACHINE SIZ=? 512
510 -
FOR EACH RESOURCE,
CONSTRUCT PARTITIONS
514 FAILURE
Y

ASSOCIATE POOLS WITH
RESOURCES -
516

v

FOR EACH PROCESS, FIND ITS
FPROJECT AND BIND TO
ASSOCIATED POOL
518

1300768A2_1_>

FIG. 5

12

v

BIND PROCESS TO EACH
RESOURCE IN POOL
520

v

DYNAMICALLY ADJUST RESOURCE
ALLOWANCES DURING SYSTEM
OPERATION BASED UPON
REQUIREMENTS
522

END

EP 1 300 766 A2

START

ASSIGN UNIQUE ID TO RESOURCE

502 Ml

B 4
ENUMERATE RESOURCE
PROPERTIES

604 A
. b4 EACH
CREATE RESOURCE NODE WITH RESOURCE
PROPERTIES AS CHILD NODES
606

v

TRANSFORM RESOURCE AND
PROPERTY TREE INTO RESOURCE
TAG CONTAINING PROPERTY
SUBTAGS
608

4
IDENTIFY DEPENDENT RESOURCES

FOR POOL
610
FOR
v EACH
TRANSFORM POOL AND ID-BASED POOL
RESOURCE REFERENCES INTC

POOL TAG CONTAINING
REFERENCES AS ATTRIBUTES
612

Y

COMMIT REPRESENTATION TO
DESIGNATED FILE
614

FIG. 6

13

BNSDOCIL: <EP______ 1300768A2_1_>

i HIS PAGE BLANK (uspt0)

	2005-09-30 Foreign Reference

